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We consider the behavior of a linear determinate system under the influence of random,
Gaussian, white noise fluctuations. In our investigation of the influence of these fluctua-
tions on the stability of the system in question, we shall limit ourselves to the case when
the intensity of fluctuations is small. This makes it possible to use the criterion of almost
sure stability of a linear stochastic system, given in[1]. In particular, we show that a de-
terminate system unstable in the Liapunov sense remains almost surely unstable on addi-
tion of a sufficiently small diffusion term. Analogous statement was put forward as a hypo-
thesis in [2]. A different aspect of the influence of random effects on the stability of the
determinate system was considered in-{3 and 4].

1. Consider a linear determinate system with constant coefficients

Xi':bi1X1~}—...~-l—men (i=1,...,n) (1.1)

For simplicity we shall assume that this system has real and different eigenvalues A {,

«es A, . We can assume without loss of generality that
Ay = max; A;

We know that the system (1.1) can be reduced, by means of a nondegenerate linear trans-

formation to a canonical form
Z; =Mz (i=1,...,n)
Let us denote by | Z| the Euclidean norm of vector Z. Then, we have

Y=2/|2)] (1.2)
System (1.1) now becomes a dynamic system on a n-dimensional sphere 5,
Y =1() E=1...,n) (1.3)

Computing a general solution of the system (1.3) we easily see, that the aggregate I of
stable invariant sets of this system consists of two points: (1, 0,..., 0) and (- 1, 0,..., 0).

2. Assume that the parameters of the system (1.1) are subject to small, random, white
noise perturbations. Then Eqs. (1.1) become a system of stochastic differential Egs.

X, = b+ Ven, (t)] X, (i=1,...,n) (2.1)
=1

where €> 0 is a small parameter and 7);; (¢) are Gaussian white noises with zero mathema-
tical expectation. These need not be independent, hence
Mg, (1) 0y (s) = 2433 6 (2 —s)
Solution of (2.1) will be a strictly Markov’s, random process X (¢, x) with initial condi-

tion X, (0, x) = x. We assume that
n

, kZ gmryy;>cla Py, >0
t, 5k, =1
i.e. that the process X, (4, %) is nondegenerate.
Peassing in the usual manner from the noises 74" (¢) to independent white noises, we can
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write (2.1) as a system of stochastic differential equations of Tto (see e.g. [5]) with a gen-
erating operator
i 2 o o
— if A

2 hEe e 2 W e
,i=1 4 i 5k, =1 L

We can assume without any loss of generality, that the system (1.1) is already in its
canonical form, i.e. that the generating operator of (2.1) (in new coordinates x, } has the
form

L=
i

n a n 83
— 1)
L1 = 2 ;vizi azi +8 2 “ij (z) aziaz-} (2.2)

=) i, jeul

where a,,(1)(z) are quadratic forms in variables z;. Markov process corresponding to the
operator (2.2) will be denoted by Z, (¢, z). Obviously, processes X, (¢, %) and Z, (¢, x)
are almost surely simultaneously stable or unstable .

It was shown in [1] that when the transformation (1.2) is applied to Z,(t, 2), it becomes
a certain random Markov process Y, (¢, y) on the sphere 5. Process Y, (¢, y) is described
by the differential operator

n a n 62
Li= 21,05 +e 2 o 555
=1 K 1, jesl ¢ !
Let us put n
L= amea),  4,@=nn=iyr e
Sn fum]

where Wi, (dy) is an invariant measure of the process Y_ (¢, 7).

From | 11'it follows that if 7, < 0, then the system (2.1) is almost surely asymptotically

stable in the large; if, on the other hand I > 0, then for any x # 0, we have
P{lim|X(t )| =00 as t— oo} =1 (2.3)
i.e. the system is almost surely unstable.

We shall show in Section 3 that the invariant measure i, (dy) of the process Y, (¢, y)
converges, as & » 0, to some invariant measure [i, {dy) of the limit dynamic system {1.3).
In addition, the measure yg (dy) is wholly concentrated on the aggregate 1" of the sphere S,
I" containing all stable invariant sets of the system (1.3).

From the above and from the form of I, we have

L=tp,D+e\ 4 0p@+ { 4@u@)=1+qe, @9
P s \r
limoy{(e)=0 as e—0

Proof of (2.4) is conducted under the assumption that the eigenvalues A; (i = 1,...,n)
are real and different. A relation analogous to (2.4) can also easily be obtained for a gene-
ral case when (1.1) has arbitrary eigenvalues, by reducing (1.3) to a canonical form and con-
sidering a resulting dynamic system on the sphere S, . Investigating the aggregate I of sta-
ble invariant sets of this system(*) we can similarly show that

I, =M+ (e), A = max; Re Ay, limoa(e) =0, as e— 0 (2.5)

The following facts emerge from Egs. (2.5).

1) If the system (1.1) is unstable, i.e. if A> 0, then a sufficiently small £, can be found
such that (2.1) will also almost surely be unstable in the sense of {2.3) for all & < ¢,

2) If the system {1.1) is asymptotically stable, i.e. A < 0, the (2.1) will also be almost
surely asymptotically stable in the large for all sufficiently small & (see [2 and 7]).

3) If the system (1.1) is stable but not asymptotically, i.e. if A= 0, then additional terms
of asymptotic expansion of 7, as & ~+ 0 should be obtained, before the problem of stability
of (2.1) can be decided, The general method of obtaining such an expression is fairly com-
plicated, but results of [8] make it possible to obtain it easily forn = 2. We also find that

*) We should note that linearly independent solutions of {1,1) corresponding to a root A; can,
in the general case, be divided into a definite number of groups oFsolutions [6]. I" will
then depend on the number of solutions in the groups corresponding te characteristic roots
with a largest real part.
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if the second eigenvalue of (1.1) is negative, then (2.1) is almost surely asymptotically
stable in the large for all sufficiently small €; if on the other hand both eigenvalues are
purely imaginary, then (2.1) can be either stable, or almost surely unstable, depending on
the diffusion coefficients a1} .

8. To conclude the proof of above statements in Section 2, it is sufficient to establish
the following general fact(*): the invariant measure yi.,(dy) of a nondegenerate Markov ran-
dom process Y, = {Y, (¢, y), P,} given on a sphere and defined by the operator(**)

n n
3 e
L= 2 bi(y)-@i—+9 2 a;; () 3y, 3y;
i=1 1, j=1
converges, as & -+ 0, to an invariant measure fiy(dy) of a limiting dynamic system
Y, =b,(Y) (i=1,...,n) (3.1

and the measure ;i (dy) is wholly concentrated on stable invariant sets of the system (3.1).

Let I" be an aggregate of stable invariant sets of (3.1) and let I'; he a S-neighborhood
of I'. Assume in addition, that K is an aggregate of unstable invariant sets of the system
(3.1) and X, is a y-neighborhood of K where & and y are so small, that K. () [y=a. Then,
for any y EAY_ =8, \\ K, we can find such tg = t°(5. y) that the trajectory Yolt, ¥) of
the dynamic system ?3.1) originating at the initial moment at the point y, belongs to the set
Ty s atallt3¢y. This, together with the asymptotic expansion for diffusion processes
dependent on small parameter [10], infers that at any fixed ¢ 3 ¢,, for y € 4.,

lim P Y, (L, y)ETg=1 as -0 (3.2)

uniformly in y E 4.,

Let us now denote by 7,(y) the instant at which the trajectory of Y, (s, y) leaves the
set K. for the first time. Proof of Theorem 4 in [11] easily yields the following relation
valid for some T > 0 which states, that

T
lim P, {r, (y)>8—2}=0 as £ 0 (3.3)

uniformly in y & KY.
Using (3.2), (3.3) and a specific Markov’s property we can easily show that as & + 0,

P, {y, 1;—1 . KY} —P, {ye (%*;—1 v)e KY} -0 (3.4)

uniformly in y € Sy
Moreover, from the definition of invariant measure p (dy) we have for any open set on
the sphere S, and any ¢ > 0,
b (0) = P, 1, UY (@) 3.9
S
n
Eqs. (3.4) and (3.5) together, yield (similar method was used in [s])
limp, (K,) =0 as £6—0 (3.6)
Consequently from (3.2), (3.5) and (3.6), we obtain
lim p, (Tg) =1 as £ 0

Last equation which is valid for all sufficiently small §, implies that the invariant mea-
sure t(‘(dy converges, as & » 0, to a certain measure i ,(dy) wholly concentrated on I'.
The author thanks R.Z. Khas’minskii for valuable suggestions
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