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We consider the behavior of a linear determinate system under the influence of random, 
Gaussian, white noise fluctuations. In our investigation of the influence of these fluctua- 
tions on the stability of the system in question, we shall limit ourselves to the case when 
the intensity of fluctuations is small. This makes it possible to use the criterion of almost 
sure stability of a linear stochastic system, given in [I]. In particular, we show that a de- 
terminate system unstable in the Liapunov sense remains almost surely unstable on addi- 
tion of a sufficiently small diffusion term. Analogous statement was put forward as a hypo- 
thesis in [2]. A different aspect of the influence of random effects on the stability of the 
determinate system was considered in-[3 and 41. 

1. Consider a linear determinate system with constant coefficients 

Xi’ x baX, + . . . -+ binX,l (i’l,. ., R) (1.1) 

For simplicity we shall assume that this system has real and different eigenvalues h t, 
. . . . ha. We can aaanme without lose of generality that 

h, = maxi hi 

We know that the system (1.1) can be reduced, by means of a nondegenerate linear trans- 
formation to a canonical form 

Zi’ = h.Z. (i = 1,. . . ) n) 
Let us denote by 12 ( the Euclidern’norm of vector 2. Then, we have 

Y=Z/IZl (1.2) 
System (1.1) now becomes a dynamic system on a n-dimensional sphere S, 

Y+’ = li (Y) (i = 1, . . . , n) (1.3) 

Computing a general solution of the system (1.3) we easily see, that the aggregate r of 
stable invariant acts of this system consists of two points: (1, O,..., 0) and (- 1, O,...,O). 

2. Assume that the parameters of the system (1.1) are subject to small, random, white 
noise pertnrbationa. Then Eqa. (1.1) become a system of stochastic differential Eqs. 

n 

(i = 1,. .( n) (2.1) 

where a > 0 is a small parameter and vr, ‘(t) are Gaussian white noises with zero mathema- 
tical expectation. These need not be independent, hence 

MT)*;(t) ?)j; (s) = 2a$ 6 (t - s) 

Solution of (2.1) will be a strictly Markov’a, random process X&t, n) with initial condi- 
tion X, (0, I) = x. We assume that 

&$ylYiYj >, c I r I2 I Y I29 c>o 
i, j. k, I=1 

i.e. that the process X (t, x) is nondegenerate. 
Passing in the nauaf manner from the noiaea 7 ,,‘(t) to independent white noises, we can 
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write (2.1) as a system of stochastic differential equations of Ito (see e.g. [5] ) with a gen- 
erating operator 

L = i “ipi& + e 

t, j=l t 
i j j{ 
* 11, = 

1 c%VI &- 

We can assume without any loss of generality, that the system (1.1) is already in its 
canonical form, i.e. that the generating operator of (2.1) (in new coordinates x1 ) has the 

where o,,(t) (a) are quadratic forms in variables zr. Markov process corresponding to the 
operator (2.2) will be denoted by 2-e (t, z). Obviously. processes X, (8, X) and 2, (t, X) 
are almost surely simultaneously stable or unstable . 

It was shown in [I] that when the transformation (1.2) is applied to ZL(t, sf, it becomes 
a certain random Markov process Ye (t, y) on the sphere S,,. Process Yr(t, y) is described 
by the differential operator 

4 = s -&(!/I Pe (Q), A, (~1 = Ll ln I z I = 2 kg: + eJ., (Y) 

5-4 i5-d 

where pe (dy) is an invariant measnre of the process Y, ft, y). 
Front [I] it follows that if I, < 0, then the system (2.1) is almost surely asymptotically 

stable in the large; if, on the other hand I, > 0, then for any x f 0, we have 
P {lim 1 X (2, 2) ] = Do as t + cm} r= 1 (2.3) 

i.e. the system is almost surely unstable. 
We shall show in Section 3 that the invariant measure PE (dy) of the process Y, (t, y) 

converges, as a + 0, to some invariant measure ~.to (dy) of the limit dynamic system (1.3). 
In addition, the measure p. (dy) is wholly concentrated on the aggregate r of the sphere S,, 
I” containing all stable invariant sets of the system (1.3). 

From the above and from the form of r, we have 

A, (Y) pe (dyf = h, A- a* (e), (2.4) 

SnV 

iinlar (E) = 0 as E+ 0 

Proof of (2.4) is conducted under the assumption that the eigenvahres A, (i = l,...,n) 
are real and different. A relation analogous to (2.4) can also easily be obtained for a gene- 
ral case when (1.1) has arbitrary eigenvalues, by reducing (1.3) to a canonical form and con- 
sidering a resulting dynamic system on the sphere S,. Investigating the aggregate I? of sta- 
ble invariant sets of this system(*) we can similarly show that 

I, = i 4 cz (e), h = maXi Re hi, lim 05 (e) = 0, as e j 0 (2.5) 
The following facts emerge from Eqs. (2.5). 
1) If the system (1.1) is unstable, i.e. if h> 0, then a sufficiently small co can be found 

such that (2.1) will also almost surely be unstable in the sense of (2.3) for all e < e,. 
2) If the system (1.1) is asymptotically stable, i.e. h < 0, the (2.1) will also be almost 

surely asymptotically stable in the large for all sufficiently small s (see f2 and ?] ). 
3) If the system (1.1) is stable but not asymptotically, i.e. if A= 0, then additional terms 

of asymptotic expansion of I, as E + 0 should be obtained, before the problem of stability 
of (2.1) can be decided. The general method of obtaining such an expression is fairly com- 
plicated, but results of [8] make it possible to obtain it easily for n = 2. We also find that 

*) We should note that linearly independent solutions of (1.1) corres onding to a root X, can, 
in the general case, be divided into a definite number of groups oPsolutions [6]. r will 
then depend on the number of solutions in the groups corresponding to characteristic roots 
with a largest real part. 
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if the second cigsnvalna of (1.1) is negative, then (2.1) is almost surely asymptotically 
stable in the large for all sufficiently small E; if on the other hand both eigsnvalaes are 
purely imaginary, then (2.1) can be either stable, or almost surely unstable, depending on 
the diffusion coefficients o,# . 

8. To conclude the proof of above statements in Section 2, it is sufficient to establish 
the following general fact(*): the invariant measure p.,( dy) of a nondegenerate Markov ran- 
dom process Y, = {Y, (t, v), P,} given on a sphere and defined by the operato@) 

n- n 

L= 2 b,(U)&+e 2 %j(Y)& 
fE1 i, j=l 

converges, as E + 0, to an invariant measure h(dy) of a limiting dynamic system 

Y; = b,(Y) (i = 1,. . ., n) (3.1) 

and the measure p,( dy) is wholly concentrated on stable invariant sets of the system (3.1). 
Let r be an aggregate of stable invariant sets of (3.1) and let Pa he a &neighborhood 

of r. Assume in addition, that K is an aggregate of unstable invarfant sets of the syabm 
(3.1) and K, 
for any 

is a y-neighborhood of K where 8 and y are so small, that K, n r,= Q. Then, 
y EA.,. = S \ K,’ we can find such tq = ru(6, y) that the trajectory Yo(t, y) of 

the dynamic system 73.1) originating at the initial moment at the point y, belongs to the set 

d2iinde.t on small par&eter [lo], 
at all t &to. This together with the asymptotic expansion for diffusion processes 

infers that at any fixed t ) tc, for y E A,, 

lim P, {Y, (t, Y) E P,) = 1 as e-0 (3.2) 

uniformly in y ~-4,. 
Let un now denote by 7,(y) the instant at which the trajectory of Y, (t, y) leaves the 

set ,K, for the first tfme. Proof of Theorem 4 in [ll] easily yields the following relation 
valid for some T > 0 which states, that 

lim P, r =o as S-0 (3.3) 

uniformly in y E K,. 
Using (3.2), (3.3) and a specific Markov’s property we can easily show that as 8 + 0, 

(3.4) 

uniformly in y E S,. 
Moreover, from the definition of invariant measure pe(dy) we have for any open set on 

the sphere S, and any t > 0, 

(3.5) 

Eqs. (3.4) and (3.5) together, yield (siiilar method was used in [9] ) 

lim pr (K,) = 0 as 8-0 (3.6) 

Consequently from (3.2), (3.5) aud (3.6), we obtain 
lim pr (rs) = 4 a8 e+O 

Last e uation which is valid for all sufficiently small 8, impliea that the invarfant mea- 
sure p(dy? ‘t, convar es, as E -* 0, to a certain measure fi c( dy) wholly concentrated on r. 

T e author than R.Z. Khas’minskii for valuable suggestions 
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